

Overview and operating principle

Ystral

- 1959 ystral founded in Stuttgart
 - one machine = Jetstream Y Technology
 - one focus = dairy industry
- 1973 moved to Ballrechten-Dottingen
 new Facilities starting the new trial center
- 1998 Management David and Peter Manke
- 2005 MBO David Manke, Georg Manke, Peter Manke
- 2011 New modern assembly hall opened
- 2011 Established ystral asia pte ltd in Singapore
- 2013 Established ystral india pvt ltd in Bangalore

Ystral company

- Modern production facilities
 - Assembly of large turn-key production systems
 - FAT can be conducted in-house
- Modern trial facility
 - Over 200 trials a year with customers
 - All combinations of equipment possible
 - Well equipped analytical laboratory
- Extensive range of "roaming" trial machines
 - Trials directly customer site
- 2018 more than 260 employees

Products and Services

JetStream Mixers

- ✓ Homogenous mixing
- Dissolving
- ✓ Suspending
- Cooling, heating
- ✓ Crystallisation

Batch Dispersers

- Dispersing
- Emulsifying
- ✓ Wet grinding
- Melting
- Extracting

Dispermix

- Mixing
- Dispersing
- Emulsifying
- Dissolving
- De-agglomeration

Batch-TDS Powder Induction Systems

- Powder induction
- Wetting
- Mixing
- Blending
- ✓ Aeration
- Introduction of gas

In-Line Dispersers

- Dispersing
- Emulsifying
- Shearing
- ✓ Wet grinding
- Controlled reaction
- Saponification
- Homogenisation

Conti-TDS

- Powder induction
- ✓ Wetting
- Blending
- Dispersing
- Dissolving
- Emulsifying
- Reaction
- Aeration/deaeration
- Controlled introduction of gas

Process and Plant Design

- Process engineering
- Customer focused solutions
- Process machinery and components
- Turnkey systems in a modular concept
 - Liquid handling
 - Powder handling
 - Process monitoring and control
 - Process automation

Where are we active

Food industry :

dairy products, flavours and fragrances, edible oils, sweets, juices, baby food, ice cream etc.

Cosmetic industry :

creams and lotions, personal care, shampoo, etc.

Pharmaceutical industry :

active agent solutions, tablet coatings, additives, clinical nutrition, etc.

Chemical industry :

paints, lacquers, printing inks, adhesives, home care, agrochemicals, paper coatings etc.

Technical Advantages of **YSTRAL Conti-TDS**

Technical Advantages

- Shear gradient 50'000
 1000 times higher
- Specific Power during dispersion 50 MW/m³
 5000 times higher
- Specific Energy ("Energy Density") during dispersion : 1 to 5 MJ/m³
- Specific liquid surface during powder addition : 0,5 to 2 Million m²/min; 10 times more
- No vortex
- No additional air
- Less vapour
- No high viscosities required to create shear
- Variable batch sizes, viscosities, filling levels
- Reproducibility
- Better Safety

Limitations of "traditional" production technology

- Manual semi-automatic production processes
- Typical maximum batch sizes up to 10'000 litres
- Time consuming dosing of solids from sacks, big-bags or silos
- Uncontrollable wetting, dispersing and homogenisation process
- Large amount of air brought into the product
- Small production window when processing various viscosities
- Out-dated stirrer technology for mixing, letdown and adjustment

"Limitless" production possibilities using YSTRAL technology

- Full automated production processes
- Variable production quantities not restricted by the "tank" size
- Enforced dispersion and wetting with YSTRAL Conti-TDS
- Flexibility to increase production capacities
- Flexibility to change application and restructure as markets change
- Mixing without bringing in air
- Large production window when processing various viscosities
- JetStream mixing technology for let-down and 'perfect' homogeneity in the shortest time

110% MIXING SOLUTIONS

Working principle of **YSTRAL Jet stream mixer**

YSTRAL Jetstream Mixer

- ✓ Fast rotating rotor creates a liquid stream in a stator
- Liquid stream is directed towards the bottom of the vessel
- No rotation of the liquid in the vessel vertical mixing
- Liquid stream is divided on the bottom of the vessel and directed upwards
- On the surface the liquid stream is redirected towards the rotor/stator system
- The whole contents of the vessel is in motion
- ✓ No induction of air
- No sedimentation of heavy powders
- Rotating parts covered (safety!)

Micro Mixing

In the mixing head, turbulent, fast, effective

Macro Mixing

- In the whole vessel
- ✓ Homogenous
- Laminar
- ✓ Everywhere

- Stirrers can ONLY make
 "SUSPENSIONS" according to the one (1) second rule or 90%
 homogeneity criteria
- ✓ No vortex formation
- No induction of air
- No baffles required in the tank (easier cleaning)
- Suitable for all vessel designs and sizes

YSTRAL Conti-TDS

YSTRAL Conti-TDS

Working principle

- Basic principle is similar to a centrifugal pump
- Inner rotor and outer rotor have different pumping capacities
- ✓ The different pumping capacities create a vacuum (up to 95%)
- A stator is located between inner rotor and outer rotor
- Powder and Liquid are separated by the disc-shape rotor until they meet in the wetting and dispersing zone

Wetting/Dispersing zone

- Extremely high-frequency dispersing under vacuum
- Maximum vacuum, maximum distance between particles
- ✓ Specific surface of the liquid is enlarged up to 2'000'000 times
- Complete wetting and dispersing
- ✓ Maximum shear gradient up to $60'000 \text{ s}^{-1}$. (HSD = 50 s⁻¹ and a stirrer = 20 s⁻¹)

How does it work in detail?

Before induction

- Powder is a "dispersion" of solid and air
- Powders contain agglomerates
- ✓ The pores and gaps inside agglomerates are filled with air

- Agglomerates have to be completely destroyed without unacceptable influence on the basic material
- Agglomerates need to be 'wetted' BOTH inside and outside for a "perfect" dispersion

Step 1 – Powder Induction

- Powder enters into the wetting chamber
- Vacuum increases
- ✓ Volume of air increases 20 times under full vacuum
- Distance between particles increases open powder surface
- Speed of particles increases powder is fluidised
- ✓ Air expands, also inside the agglomerates

Step 2 – Wetting and dispersing

- ✓ Liquid surface is enlarged by shear and turbulence
- Powder is wet and dispersed into the liquid
- Wetting under maximum vacuum
- ✓ Agglomerates completely enveloped with liquid
- Wetting and dispersing under maximum vacuum
- ✓ Dispersing under maximum shear between rotor and stator

Step 3 – Exit from wetting chamber

- Dispersion leaves the dispersing zone and returns back to the vessel
- ✓ Maximum pressure
- Air is compressed to the minimum volume
- ✓ Air bubbles coagulate and can freely rise out in the process vessel
- Compression of air inside the agglomerate
- Liquid is inducted into the pores and penetrates the agglomerate

✓ Wetting of inner surface and break-up of agglomerates

Step 4 – Subsequent passages (Recirculation)

- Dispersion is recirculated from the vessel back towards the dispersing zone
- Some smaller agglomerates may have remained containing 'rests' of air
- Second passage into the vacuum zone, now on the liquid side
- ✓ Air expands again to a maximum

Step 5 – Dispersing (Recirculation)

- Dispersion reaches the dispersing zone in recirculation
- Powder is wetted and dispersed into the recirculated dispersion
- ✓ Again dispersing under maximum vacuum
- Again dispersing under maximum shear between rotor and stator
- ✓ Air is divided from the particle because of the shear forces

Step 6 – Exit from wetting chamber (recirculation)

- Dispersion leaves the dispersing zone and is pumped back to the vessel
- ✓ Again maximum pressure
- ✓ Wetting of inner surface and break-up of agglomerates
- ✓ The remaining air coagulates and leaves the dispersion

Equipment Focus of **YSTRAL Conti-TDS**

Equipment Focus – YSTRAL Conti-TDS

- Installation outside the vessel
- Connections via pipes or hoses
- ✓ Liquid is circulated at high flow (90'000 ltrs/hr)
- ✓ A vacuum is produced inside the dispersing zone
- Dust- and loss- free induction and dispersing of the powder
- Induction from sack, hopper, drum, container, bigbags silo or silo truck
- After induction, additional dispersing until the required particle size, homogeneity or consistency is reached
- All energy of the machine is applied in the relatively small dispersing and wetting zone high "energy density"
- Machine may be used to pump the finished product to the next processing step

Equipment Focus – YSTRAL Conti-TDS

	<u>PiloTec</u>	<u>Conti-TDS-2</u>	<u>Conti-TDS-3</u>	<u>Conti-TDS-4</u>	<u>Conti-TDS-5</u>	<u>Conti-TDS-6</u>	Conti-TDS-8
Power in kW	3 - 5,5	7,5 - 11	11 - 30	37 - 90	37 bis 90	110-150	200-250
Max. speed in rpm	8000	6000	3600	3600	3600	3600	3600
Induction rate in kg/min							
- from paper bag	1	1 - 4	2 bis 20	3 bis 50	4 bis 50	4 bis 50	4 bis 50
- from BigBag, container							
hopper or silo	1 - 6	4 - 12	6 bis 200	10 bis 400	10 bis 500	10 bis 500	bis 1000
maximum viscosity in mPas							
- normal operaton	2000	2000	4000	4000	6000	8000	8000
 with additional pump 		10000	50000	100000	100000	100000	100000
Inlet pressurein bar	0,05 - 0,1	0,05 bis 0,2	0,1 bis 0,4	0,1 bis 0,6	0,1 bis 0,9	0,1 bis 0,9	0,1 bis 0,9
max. counter pressure in bar							
 during powder induction 	0	0	0	1	1		
- dispersion, pumping	5	2,5 (4,0)	3,0 (4,5)	3,5 (5,0)	5 (8,0)	() = at maxin	num speed)
Pumping rate in m³/h							
- maximum (water)	10	16	48	84	90		
- during powder induction	3-6	6-10	20-30	30-50	30-50		
working temperature max. 70°C for water as a basic liquid							
		for liquid with higher boiling point please ask the manufacturer					

	minimum inlet	maximum	filling level above	Minimum Pipe Diameter according to the		
	pressure	outlet pressure	Conti-TDS at	Viscosity		
			density 1 kg/dm ³	under 4000 mPas	above 4000 mPas *	
Conti-TDS-2	0,05 bar (1 psi)	0,2 bar (3 psi)	0,5 bis 2m (2-6 ft)	40 mm / 1½"	50 mm / 2"	
Conti-TDS-3	0,1 bar (1,5 psi)	0,4 bar (6 psi)	1 bis 4m (3-12 ft)	65 mm / 2½"	80 mm / 3"	
Conti-TDS-4	0,1 bar (1,5 psi)	0,6 bar (9 psi)	1 bis 6m (3-20 ft)	80 mm / 3"	100 mm / 4"	
Conti-TDS-5	0,1 bar (1,5 psi)	0,9 bar (13 psi)	1 bis 9m (3-30 ft)	100 mm / 4"(!)	100 mm / 4"	

* if required with additional pump in the outlet

Equipment Focus – YSTRAL Conti-TDS-5

- ✓ Shear speed 25 m/sec
- ✓ Distance rotor-stator 500 µm
- ✓ Shear gradient 50,000 sec-1 (~60'000 sec-1)
 - > a stirrer is 20 sec-1
 - a dissolver is 50 sec-1
- Maximum pumping capacity for water 90 m³/h
- Usual pumping capacity during induction 30 to 50 m³/h

Typical Induction rate :

- Milk powder 100 200 kg/min
- Dextrose 80 150 kg/min
- Starch 80 150 kg/min
- Hydrocoloid 20 50 kg/min

A "basic" set-up: -Conti TDS -One tank with mixer -One powder dossing system

Example: Single Tank Skidded-Unit with Powder Handling Modules

General Advantages

General Advantages

✓ Higher quality

better particle size distribution, better color strength, less air incorporation since the system works without vortex

✓ Higher Flexibility

variable batch sizes, viscosities, filling levels etc.

 ✓ All viscosity ranges – not only in high viscosities like the dissolver the dispersion of finest powders in highest viscosities as typically in a dissolver is not required and makes no sense

- Production of Dispersions, intermediates or direct production of the final product
- Much higher level of safety

no powder handling at open tanks and with rotating dissolver discs

Summary – YSTRAL Conti-TDS

- Dust- and loss-free operation, no powder transportation, no refilling, no dust exhaust systems, no filter systems
- ✓ Direct induction from bags, big-bag, drum, silo or powder container
- Immediate and complete wetting directly into the liquid stream
- ✓ No crusts at the wall of the vessel or the mixing shaft
- High pumping capacity results in high number of circulations
- ✓ Higher degree of dispersion compared to conventional mixing principles
- The possibility to induct powders into high concentrated or high viscosity dispersions and to wet them completely
- Universal usability and adaptation
 - to several vessels
 - into existing processing systems
 - > with casters for operation in different working areas

Summary – YSTRAL Conti-TDS

- ✓ Powder induction without opening the vessel or the system
- ✓ Function independent from vessel size and filling level in the vessel
- Possibility to induct powder directly into a liquid stream (e.g. when filling a vessel)
- After powder induction, the same machine is used to disperse the product to the required particle size, homogeneity and consistency
- Transfer of the product to a storage tank with the same machine
- ✓ Hygienic design
- Easy to clean
- CIP-cleaning without disassembling

Summary – YSTRAL Conti-TDS

- ✓ More than 120 different powder inlets and tools for individual tasks
- Customer specific accessories
- Customer specific execution of the machine
- Extensive periphery (container, big-bag-stations, vessels, fluidisers etc.)

Some examples of installations performed by YSTRAL

Double Tank Skidded-Unit with Powder Handling Modules

Double Tank Skidded-Unit with Powder Handling Modules

We are looking forward to a good co-operation

ystral gmbh maschinenbau + processtechnik Wettelbrunner Str. 7 79282 Ballrechten-Dottingen Germany Tel. +49 7634/5603-0 Fax +49 7634/5603-99 ystral@ystral.de www.ystral.de

copyright © ystral gmbh maschinenbau + processtechnik. Alle Rechte an den Inhalten dieses Dokuments sind der ystral gmbh vorbehalten; insbesondere ist jegliche Vervielfältigung, Verbreitung, oder öffentliche Wiedergabe/öffentliches Zugänglichmachen dieser Inhalte ohne vorherige Zustimmung von ystral gmbh untersagt